Intelligent Archives in the Context of Knowledge Building Systems

H. (Rama) Ramapriyan*, G. McConaughy*, C. Lynnes*, K. McDonald*, S. Kempler*, D. Isaac**

* NASA Goddard Space Flight Center, Greenbelt, MD

** Business Performance Systems, Falls Church, VA

AISRP PI Meeting

April 4-6, 2005

Rama.Ramapriyan@nasa.gov

daac.gsfc.nasa.gov/IDA/

Project Summary

OBJECTIVE

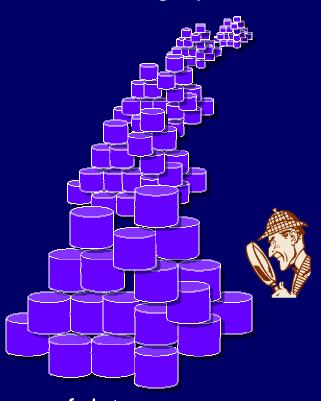
 Design a <u>conceptual architecture</u> for future <u>intelligent data archives</u> that effectively manage and extract knowledge from large volumes of data

APPROACH

- Collaborate with NASA research projects (IDU/AISRP)
- Derive capabilities & solution concepts from usage <u>scenarios</u> & technology projections
- Validate concepts in operational-scale testbed

PROGRESS

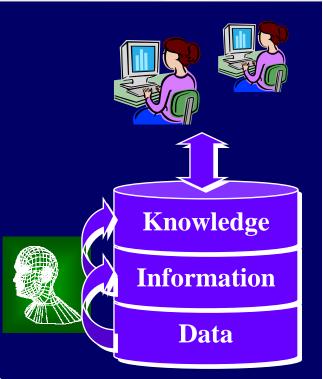
- Identified meaningful usage scenarios
- Identified needed capabilities
- Assessed implementation issues
- Defined functional architecture
- Started testbed implementation


NEXT STEPS

- Implement testbed
- Assess feasibility of large-scale data mining
- Assess science results

Motivation: Succeeding in a Data Rich Environment

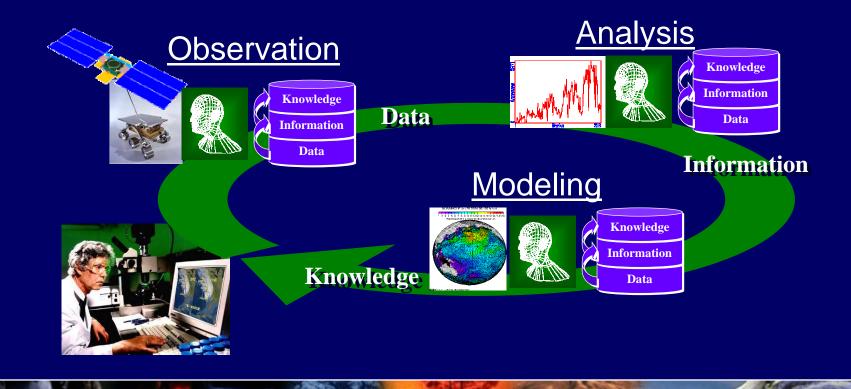
- Large and growing data collections from the Earth Observing System
 - 3.4 petabytes of data
 - 48 million files
 - 3.5 terabytes/day accumulation
- Distributed, heterogeneous data systems
 - 50 data centers
 - Complex value chains
- Broad & diverse user community
 - Research, applications, education
- Limited human capacity to examine large volumes of data
 - Users need information, not just data


The Concept

Intelligent Archives

- Archive is <u>aware of its own content</u> and usage
- Archive can <u>extract new information</u> from data holdings

Knowledge Building Systems


- Directly support building knowledge from data and information
- Incorporates intelligent archives to extract information & knowledge
- Includes feedback loops to improve adaptation to user needs and external events
- Includes coordination between intelligent archives and intelligent sensors
- Highly distributed and collaborative

Intelligent Archives in the Context of Knowledge Building Systems (IA-KBS)

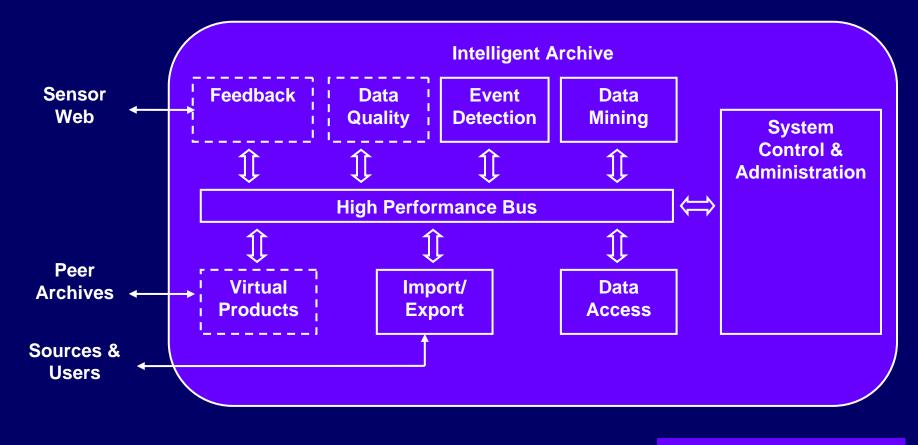
- Data archives exist throughout the information value chain
- Intelligence with feedback loops makes systems more effective
- Distributed intelligent components collaborate to achieve user goals

IA-KBS Scenarios

- Advanced weather forecasting
- Precision agriculture
- Virtual observatories
- Wildfire prediction

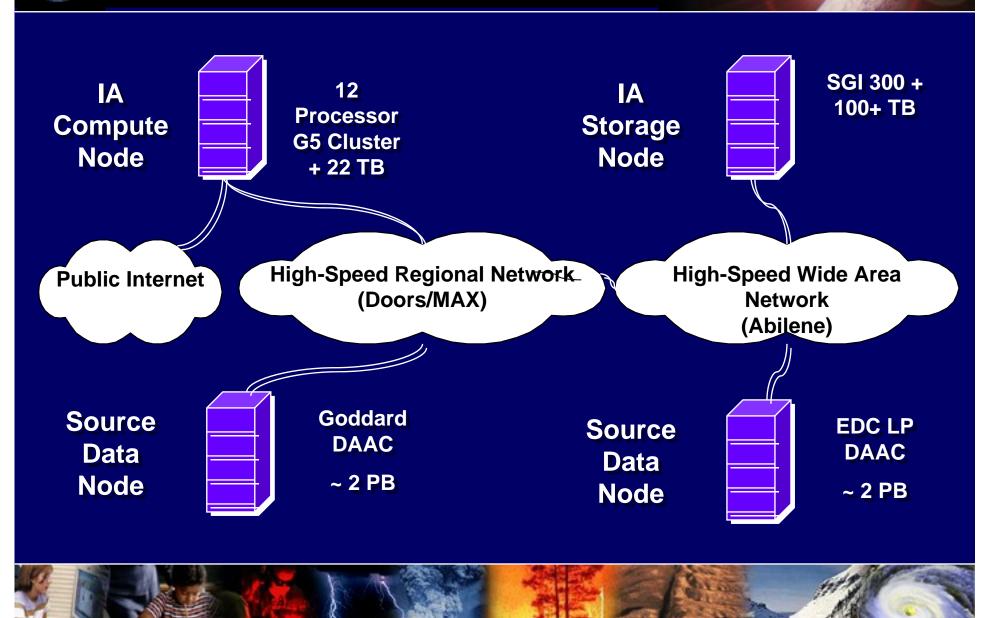
IA-KBS Potential Capabilities

- Virtual product generation
 - Dynamically assemble an information product specific to the user's need from relevant data
 - Intelligence needed to understand data relationships relative to an information "goal" and anticipate user requests
- Significant event detection
 - Automatically learn "normal" data streams and identify exceptions
 - Intelligent archive can focus attention on interesting data subsets
- Automated data quality assessment
 - Automatically identify anomalies in the data stream
 - Relieves human burden and enables rapid quality assessments


IA-KBS Potential Capabilities (cont'd)

- Large-scale data mining
 - Continuously mine archived data searching for hidden relationships and patterns
 - Enables archive to suggest models for human evaluation
- Dynamic feedback loop
 - Acting on information discovered, such as a significant event
 - Enables archive to adapt to events and anticipate user needs
- Data discovery and efficient requesting
 - Identifying new data sources and information collaborators, and using available resources judiciously
 - Enables archive to reach farther than it's own holdings

Functional Architecture


Component Legend:

Current

Future

System Network Architecture

IA-KBS - Relevant Technologies

- Distributed system architectures
 - Especially, Grid technologies
- Intelligent data understanding algorithms
 - Fern & Brodley: understanding high-dimensionality data using clustering, re-projection, cluster ensembles
 - Kumar et al: discovering climate indices using clustering on time-series data

- Danks et al: ecosystem prediction with identification & analysis of extreme events
- Teng: identifying and removing anomalies to improve classifier performance
- Kargupta: extending data mining algorithms to distributed architectures
- Smelyanskiy: Bayesian inference of non-linear dynamical model parameters
- Nemani & Golden: dynamic assembly of data and operators to satisfy a user's information goal
- LeMoigne: sub-pixel accurate image registration for data fusion

Conclusions

- Intelligent archives can improve the utility of data
 - Improved timeliness, ease of access, understandability, readiness for use, and responsiveness
- Intelligent archives can enable a variety of needed capabilities
 - Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting.
- Promising data mining algorithms have been identified and applied to remote sensing data in a laboratory environment
- Next step is to demonstrate utility and scalability in an operational environment